Stimulus Representation in the Interactions Between Multiple Brain Regions

Paul C. Bogdan¹, Shenyang Huang¹, Simon W. Davis¹, Roberto Cabeza¹
¹Duke University

Introduction
- Stimulus representation research has generally focused on cell assemblies (e.g., how neurons in a voxel encode perceptual features)
- However, the organization of cell assemblies remains unclear. Perhaps, they are distributed across regions
- Our research investigates this topic, and whether different areas within a brain system (e.g., the occipital lobe) interact to represent stimuli

Specific questions
- Should representation be entirely understood as localized assemblies? Alternatively, do representations manifest at a system level?
- Can representations be studied using tools for dynamic functional connectivity?

Task design
(N = 60)

TYPES OF ANALYSIS

1. Neural RSM (traditional)
2. System ROI-ROI connectivity
3. Inter-subject pattern similarity
4. Neural pattern similarity
5. Representational similarity analysis

However, the above analyses can actually be done with different types of input vectors:
- **ROI activity** (traditional, unit = voxel)
- **System activity** (unit = ROI average)
- **System connectivity** (unit = ROI-ROI edge)

RESULTS
- Perform every analysis across every level for each subject
 - e.g., generate RSA system scores
- For each level, regress out the effects of other levels
 - e.g., regress out RSA ROI scores and RSA connectivity scores from RSA system scores
- Colored bars reflect effects specific to a given level (post-regression), grey areas reflect effects partially mediated by another level (pre-regression)

ROI 1
Trial Average voxels by ROI
Single-trial connectivity
ROI 2
ROI 3
ROI 4
ROI 5
ROI 6

ROI-ROI connection

Discussion
- Consistent with the idea that representation is partially distributed
- Methodologically, this approach may prove uniquely useful for research on semantics or some specific areas, such as the MTL

NIH R01-AG066901-01A1

Download this poster

paul.bogdan@duke.edu
www.cabezalab.org